On online Ramsey theory

Hojin Choi

KAIST

Joint work with Ilkyoo Choi, Jisu Jeong, and Sang-il Oum

December 18, 2015

Theorem (Ramsey's theorem, 1930)

For positive integers r and s, every graph of sufficiently large order has a complete graph of r vertices or an independent set of s vertices.

Theorem (Van der Waerden's theorem, 1927)

For positive integers c and n, every c-coloring of integers in $\{1, 2, ..., N\}$ for sufficiently large N induces a monochromatic arithmetic progression of length n.

Definition of Online Ramsey Game

Originated by J. A. Grytczuk, M. Hałuszczak, and H. A. Kierstead at 2004.

Definition of Online Ramsey Game

Originated by J. A. Grytczuk, M. Hałuszczak, and H. A. Kierstead at 2004.

- \mathcal{C} : a class of graphs
- *H*: a simple graph such that $H \in C$

Originated by J. A. Grytczuk, M. Hałuszczak, and H. A. Kierstead at 2004.

 \mathcal{C} : a class of graphs

H: a simple graph such that $H \in C$

An *online Ramsey game* for H on C is a game between two players, Builder and Painter, with the following rules:

Each turn:

- Builder draws finitely many vertices and a new edge so that the resulting graph is in C
- Painter colors the new edge either red or blue.

Originated by J. A. Grytczuk, M. Hałuszczak, and H. A. Kierstead at 2004.

 \mathcal{C} : a class of graphs

H: a simple graph such that $H \in C$

An *online Ramsey game* for H on C is a game between two players, Builder and Painter, with the following rules:

- Each turn:
 - Builder draws finitely many vertices and a new edge so that the resulting graph is in C
 - Painter colors the new edge either red or blue.
- If Builder can force Painter to make a monochromatic copy of H, then Builder wins.
- If Painter can avoid creating a monochromatic copy of *H* forever, then Painter wins.

• Builder wins the online Ramsey game for C_3 on planar graphs.

Self-unavoidability

What is "Self-unavoidability"?

What is "Self-unavoidability"?

Definition

A class C of graphs is called *self-unavoidable* if Builder wins the online Ramsey game for every $H \in C$ on C.

What is "Self-unavoidability"?

Definition

A class C of graphs is called *self-unavoidable* if Builder wins the online Ramsey game for every $H \in C$ on C.

Proposition (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for every k-colorable graph on k-colorable graphs.

Proposition (Grytczuk, Hałuszczak, and Kierstead, 2004) *Builder wins the online Ramsey game for every forest on forests.* What is "Self-unavoidability"?

Definition

A class C of graphs is called *self-unavoidable* if Builder wins the online Ramsey game for every $H \in C$ on C.

Proposition (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for every k-colorable graph on k-colorable graphs.

Proposition (Grytczuk, Hałuszczak, and Kierstead, 2004) *Builder wins the online Ramsey game for every forest on forests.*

However, this is not true for outerplanar graphs!

Proposition (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for C_n on planar graphs for all n. Proposition (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for $K_4 - e$ on planar graphs. Proposition (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for C_n on planar graphs for all n. Proposition (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for $K_4 - e$ on planar graphs.

Conjecture (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for H on planar graphs if and only if H is outerplanar.

Theorem (Petříčková, 2014)

For every outerplanar graph H, Builder wins the online Ramsey game for H on planar graphs.

Theorem (Petříčková, 2014)

Builder wins the online Ramsey game for $\theta_{2,j,k}$ on planar graphs for even j, k, while $\theta_{2,j,k}$ is not outerplanar.

Builder wins the online Ramsey game for C_3 on planar graphs.

Builder wins the online Ramsey game for C_3 on planar graphs.

Theorem (Grytczuk, Hałuszczak, and Kierstead, 2004) Painter wins the online Ramsey game for C_3 on outerplanar graphs.

Theorem (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for C_3 on planar 2-degenerate graphs. Builder wins the online Ramsey game for C_3 on planar graphs.

Theorem (Grytczuk, Hałuszczak, and Kierstead, 2004) Painter wins the online Ramsey game for C_3 on outerplanar graphs.

Theorem (Grytczuk, Hałuszczak, and Kierstead, 2004) Builder wins the online Ramsey game for C_3 on planar 2-degenerate graphs.

Theorem (C., Choi, Jeong, Oum, 2015+) Painter wins the online Ramsey game for C_3 on K_4 -minor-free graphs.

Theorem (C., Choi, Jeong, Oum, 2015+)

Let F be a connected graph not isomorphic to X_5 . Painter wins the online Ramsey game for C_3 on F-free graphs if and only if F is isomorphic to a subgraph of X_i for some $1 \le i \le 4$.

Forbidden Subgraph Characterization

Question

Who wins the online Ramsey game for C_3 on X_5 -free graphs?

Thank you very much.